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Abstract. The differential nucleus concentration defined in Vali (1971) is re-examined and methods are given for its applica-

tion. The purpose of this document is to facilitate the use of the differential spectra in describing the results of drop freezing, or

similar, experiments and to, thereby, provide additional insights into the significance of the measurements. The additive nature

of differential concentrations is used to show how the background contribution can be accounted for in the measurements. A

method is presented to evaluate the confidence limits of the results at each temperature covered in the measurements.5

1 Introduction

Ice nucleation, more specifically freezing nucleation, remains a topic of interest in a variety of disciplines. Experiments with

multiple, externally identical, sample units have demonstrated the range of activities present in most samples, both for known

materials added to the water or for water derived from precipitation, lakes, rivers, or other sources. Freezing experiments are

important sources of information about ice nucleating particles (INPs) and hence are in fairly widespread use. This paper10

addresses the calculation and utilization of the differential nucleus spectrum1 derived from data obtained in drop freezing

experiments and denoted as k(T ). The closely related cumulative spectrum has been widely used already because of its direct

connection to the readily obtained fraction frozen. These functions were originally defined in Vali (1971; V71) and their link to

different forms, namely the differential and integral site density functions, is described in Vali (2014; V14). All these different

forms represent quantitative descriptions of the abundance and activity of ice nucleating particles (INPs) present in water15

samples as functions of temperature. The abundance (concentration) is defined either with respect to the volume of water in

which the INPs are suspended or to the mass or total surface area of the INPs themselves. These functions are empirical results

that represent the most relevant characteristics (activity described in terms of the characteristic temperature) of the INPs based

on the singular model of freezing nucleation. This model is time-independent and is justified by the much greater influence of

temperature than of time in the activity of INPs. Justification for this manner of describing INP activity, as well as the degree20

to which time-dependence may alter the singular description, are presented in more detail in V14.

1Strictly speaking the quantity of interest is the differential nucleus concentration. The differential spectrum is the graphical representation of the concen-

tration. However, it is convenient to refer to both as spectra.
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The spectra defined in the preceding paragraph are useful in distinguishing different INP populations by their activity.

They also provide measures of ice formation in clouds as deduced from tests with precipitation samples. In the following, the

differential spectrum is given most emphasis, partly because it is less well known, but more importantly because it is perhaps

the most effective depiction of INP activity in a sample. All impacts of INPs depend on temperature; the specific activity

expected at some temperature, quantitatively expressed, is the information most relevant to the impact being studied2. Perhaps5

most important is the fundamental perspective that motivates these studies. We would like to have clearer understanding of

the surface and kinetic factors that determine ice nucleation activity and of the temperature dependence of those factors. The

abundance of nucleating sites of different activities (characteristic temperatures) for given substances is the key information

which need to be explained in terms of structural and compositional features of the surfaces. This is the empirical input needed

to formulating theories of ice nucleation.10

There are many analogs in physics to the differential concentration information here discussed. The most prominent is

perhaps the spectral intensity of light. More mundane is the population distribution by age group. In these examples, each

segment of the spectrum, or age group can be directly observed and quantified. However, this is not the case in freezing

experiments, because freezing of a drop at some temperature forecloses getting information about other potential INPs active

at colder temperatures. These INPs not directly detectable have to be accounted for in order to get a meaningful result. Thus, it15

is necessary to obtain data with many drops in order to arrive at measures of the population at all temperatures. This problem

is treated in the derivation of k(T ) in V71.

Because the differential spectra are additive, i.e. represent the sum at each temperature of the contributions from all sources

of the INPs in a given water sample, the differential spectra provide a way to correct for background noise in drop freezing

experiments. This correction is detailed in Vali (2018) and in Section 6 of the paper. Another advantage of the differential20

spectrum is that confidence limits can be calculated for each point of the spectrum over the temperatures covered by the

measurements. This is detailed in Section 7.

2 Definitions

The INP spectra are derived from drop freezing experiments. The term drop freezing experiment is used here to represent the

class of experiments in which freezing is observed with multiple subunits drawn from a sample of water containing dispersed25

ice nucleating particles (INPs). The experiments involve steady cooling of a number,No, of drops and the freezing temperature

2The dominant role of temperature in determining activity is dimmed somewhat by the fact that gradual cooling from above 0◦C is usually involved before

reaching the specific temperature of activity. This introduces a combination of influences from the whole sequence of temperatures. Gradual cooling is the

case for laboratory experiments with previously prepared samples and also in clouds if the majority of INPs get incorporated into cloud droplets before cooling

to sub-zero temperatures. In some experiments and in some cloud situations, INPs enter into the water droplets (samples) at the supercooled temperature of

interest, but in these cases observed freezing events may include effects often referred to as contact nucleation. This complication is set aside in this paper, so

the nucleus spectra have to be viewed with that caveat in mind. A relatively minor magnitude of this simplification is argued in Vali (2008) and in references

quoted there, but opposing arguments are found in other publications.
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of each drop, Ti, is recorded. In practice, several runs with the same sample may be combined to accumulate a sufficiently

large sample size No for useful statistical validity of the results.

The differential nucleus concentration, k(T ) is defined in Eq. (11) of V71 as

k(T ) = − 1
X ∗∆T

∗ ln(1− ∆N
N(T )

) (1)

where T stands for temperature in oC, N is the number of drops not frozen, ∆N is the number of freezing events observed5

between T and (T −∆T ) i.e. drops for which (T −∆T )< Ti < T and X is the normalization to unit volume of water, unit

mass or surface of INPs, or else, of the INPs. It is to be remembered that this expression is the result of considering that a

freezing event in the interval ∆T is the result of a drop containing at least one INP active in that temperature interval. For

relatively small ∆T -values and for large N this approximation to having a single INP per drop responsible for the observed

freezing event is very good (and can be quantified). For experiments with adequate number of drops, the value of ∆N/N(T )10

is going to be small, so that an approximate expression is valid with negligible error, except for the lowest temperatures

observed, when N(T ) also becomes small. The error reaches 10% when ∆N/N(T ) exceeds 0.2, i.e. for the last 5 drops,

which is usually only a small fraction of the total. The approximate relationship is:

k(T ) =
1

X ∗N(T )
∗ ∆N

∆T
. (2)

The cumulative concentration, the integral of k(T ) over temperature, is given by Eq. (13) in V71 as:15

K(T ) =
1
X

∗ [lnNo− lnN(T )] (3)

which can be re-written in terms of the fraction of drops frozen f(T ) as

K(T ) = − 1
X

∗ ln[1− f(T )] (4)

Because f(T ) is readily obtained in most experiments, this direct link to K(T ) is used in a number of publication (e.g.

DeMott et al., 2017; Hader et al, 2014; Häusler et al. 2018; Harrison et al. 2018; Kumar et al. 2014; Pomeranov et al, 2018;20

Tarn et al, 2018, Whale et al., 2015 ) to represent the results in terms of K(T ).

A third alternative to obtaining K(T ) is to do a numerical integration of k(T ), remembering that the k(T ) values here are at

discreet T values, not a function:

K(T ) ==
T∑

0

k(T ) ·∆T . (5)
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For normalization of k(T ) or K(T ) to unit volume of the water X = V where V is the volume of the drops, assuming drops

of uniform sizes. For normalization to unit surface area of material dispersed in the drops X =A with A denoting the average

surface area of particles in each drop. In this case, many authors replace K(T ) by ns(T ) where ns stands for the site density.

The use of average particle surface area is justified by evidence that a high number of particles per drop is usually required

for detectable numbers of INPs so that deviations from the average surface area per drop are negligible. In the following,5

normalization to unit volume of water is used.

3 Sample data

Data from an experiment with a SnomaxTM sample is used here3 for demonstrating the manner of calculating the differential

concentration. Observed freezing temperatures for 507 drops are listed in Table 1. The observations were made with steady

cooling of the drops. Freezing events spread over the temperature range from near −4◦C to near −35◦C. Freezing events10

are most frequent in two temperature regions, one near −8◦C and the other at the lowest temperatures. As can be seen,

some temperature values occur more than once due to the finite resolution of the detection and recording system used. These

characteristics of this data make it useful to demonstrate various points about the calculations.

4 Choice of temperature interval

The main decision in applying Eqs. (1) of (2) to experimental results is what numerical values to use for ∆T , taking into15

account constrains arising from the resolution of the temperature measurements and from finite sample sizes. While all other

quantities in Eqs. (1) to (3) are directly measured, ∆T is not an empirical value but is one chosen in analysis for desirable

representation of the observations. For the assumptions involved in the derivation of k(T ), as described in V71, infinitesimally

small intervals δT should be applied, but this would necessitate infinite, or very large, sample sizes No in order to avoid a

large number of intervals without any events. Thus a finite ∆T is required. It will be argued that a uniform ∆T over the entire20

temperature range of an experiment is the simplest and most effective choice.

One possible solution for calculating k(T ) with high resolution would be to use ∆N = 1 and with the temperature intervals

between freezing individual events as ∆T . This would yield as many points on the spectrum plot as the number of drops.

However, this approach would have variable ∆T -values which in turn leads to variations in the calculated k(T ) values. The

magnitude of each point would depend on the temperature interval between successive freezing events. A given freezing event25

would correspond to a k(T ) value whose magnitude is changed depending on the previous freezing event in the sample. In

effect, the quantitive significance of the results would be negated. To see this for the Snomax data, the temperature gaps, the

differences between the freezing temperatures for successive events are shown in Fig. 1. Each point corresponds to one drop

and is plotted at the freezing temperature of that drop. The large number of points at zero gap size indicate coincidences in the

recorded temperatures for several drops due to the finite resolution of the recording system. Another grouping of points just30

3These data are from work described in Polen et al. (2018) and are used here with kind permission by Dr. Ryan Sullivan of Carnegie Mellon University.
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Table 1. Observed freezing temperatures for 507 drops of a sample of SnomaxTM dispersed in purified water. Freezing temperatures are

listed in decreasing order. Multiple values are due to time steps of the detection system used. These data are from work described in Polen et

al. (2018).

-4.42 -6.34 -6.63 -6.71 -6.79 -6.84 -6.84 -6.92 -6.92 -6.92 -7.01 -7.01 -7.01

-7.01 -7.01 -7.05 -7.14 -7.14 -7.14 -7.14 -7.14 -7.14 -7.14 -7.21 -7.21 -7.21

-7.21 -7.29 -7.29 -7.29 -7.29 -7.29 -7.34 -7.34 -7.34 -7.43 -7.43 -7.43 -7.43

-7.50 -7.50 -7.50 -7.50 -7.57 -7.57 -7.57 -7.57 -7.57 -7.57 -7.57 -7.57 -7.57

-7.57 -7.57 -7.63 -7.63 -7.63 -7.63 -7.63 -7.63 -7.63 -7.63 -7.71 -7.71 -7.71

-7.71 -7.71 -7.71 -7.71 -7.71 -7.71 -7.71 -7.79 -7.79 -7.79 -7.79 -7.79 -7.79

-7.79 -7.86 -7.86 -7.86 -7.86 -7.86 -7.86 -7.93 -7.93 -7.93 -7.93 -7.93 -7.93

-7.93 -7.93 -7.98 -7.98 -7.98 -7.98 -8.05 -8.05 -8.05 -8.05 -8.05 -8.05 -8.05

-8.05 -8.05 -8.05 -8.11 -8.11 -8.11 -8.21 -8.21 -8.21 -8.21 -8.21 -8.21 -8.21

-8.27 -8.27 -8.27 -8.27 -8.27 -8.27 -8.27 -8.34 -8.34 -8.40 -8.40 -8.40 -8.40

-8.40 -8.40 -8.50 -8.50 -8.55 -8.55 -8.55 -8.55 -8.55 -8.55 -8.63 -8.63 -8.70

-8.70 -8.77 -8.77 -8.77 -8.84 -8.84 -8.84 -8.84 -8.92 -8.99 -8.99 -8.99 -8.99

-9.06 -9.06 -9.06 -9.06 -9.06 -9.12 -9.21 -9.21 -9.26 -9.35 -9.50 -9.55 -9.55

-9.71 -9.79 -9.93 -10.00 -10.00 -10.08 -10.13 -10.29 -10.34 -10.57 -10.57 -10.64 -10.71

-11.29 -11.29 -11.36 -11.94 -11.94 -11.94 -12.02 -12.16 -12.69 -12.69 -12.92 -13.28 -13.48

-13.56 -13.99 -14.42 -14.94 -15.30 -15.67 -16.03 -16.82 -16.82 -17.19 -17.32 -17.54 -19.30

-20.40 -20.85 -21.13 -21.13 -21.87 -22.66 -23.73 -23.73 -24.12 -24.17 -24.26 -25.06 -25.34

-25.42 -25.77 -25.84 -26.07 -26.29 -26.36 -26.51 -26.56 -26.65 -26.93 -27.07 -27.07 -27.30

-27.65 -27.81 -27.87 -27.94 -28.08 -28.31 -28.36 -28.47 -28.52 -28.60 -28.60 -28.68 -28.80

-28.89 -28.89 -29.04 -29.16 -29.25 -29.31 -29.46 -29.46 -29.55 -29.69 -29.91 -30.05 -30.05

-30.21 -30.48 -30.48 -30.48 -30.70 -30.78 -30.78 -30.85 -30.93 -31.00 -31.06 -31.16 -31.16

-31.32 -31.32 -31.32 -31.32 -31.41 -31.56 -31.63 -31.77 -31.77 -31.83 -31.92 -31.92 -31.92

-31.97 -32.22 -32.22 -32.28 -32.28 -32.28 -32.33 -32.42 -32.49 -32.49 -32.64 -32.64 -32.70

-32.78 -32.86 -32.86 -32.86 -32.86 -32.94 -32.94 -32.94 -33.00 -33.00 -33.00 -33.06 -33.06

-33.14 -33.14 -33.23 -33.23 -33.29 -33.29 -33.29 -33.35 -33.35 -33.35 -33.43 -33.43 -33.43

-33.43 -33.43 -33.43 -33.49 -33.49 -33.49 -33.49 -33.49 -33.49 -33.59 -33.59 -33.59 -33.59

-33.59 -33.59 -33.59 -33.59 -33.59 -33.59 -33.65 -33.65 -33.65 -33.65 -33.65 -33.65 -33.65

-33.65 -33.65 -33.65 -33.71 -33.71 -33.71 -33.71 -33.71 -33.71 -33.71 -33.71 -33.79 -33.79

-33.79 -33.79 -33.79 -33.79 -33.79 -33.79 -33.79 -33.79 -33.79 -33.79 -33.79 -33.79 -33.79

-33.79 -33.86 -33.86 -33.86 -33.86 -33.86 -33.86 -33.86 -33.86 -33.86 -33.86 -33.86 -33.86

-33.86 -33.86 -33.86 -33.86 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92

-33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92

-33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -34.01 -34.01 -34.01 -34.01 -34.01 -34.01

-34.01 -34.01 -34.01 -34.01 -34.01 -34.01 -34.01 -34.01 -34.01 -34.01 -34.01 -34.01 -34.01

-34.01 -34.01 -34.01 -34.07 -34.07 -34.07 -34.07 -34.07 -34.07 -34.07 -34.07 -34.07 -34.07

-34.07 -34.07 -34.07 -34.07 -34.07 -34.07 -34.07 -34.07 -34.07 -34.07 -34.13 -34.13 -34.13

-34.13 -34.13 -34.13 -34.13 -34.13 -34.13 -34.13 -34.13 -34.13 -34.13 -34.13 -34.23 -34.23

-34.23 -34.23 -34.23 -34.23 -34.23 -34.23 -34.23 -34.23 -34.23 -34.23 -34.23 -34.23 -34.23

below 0.1 is due to the temperature change during the time intervals with which the number of frozen drops was recorded. Both

the zeroes and these minimum non-zero values are most numerous near −8◦C and near −33◦C where there are high numbers
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Figure 1. Temperature gaps between successive freezing events in the data given in Table 1. Fewer events in the middle range of temperatures

produce fewer and larger gaps.

of freezing occurrences. Between these two groups larger gaps become more frequent due to the sparsity and hence larger time

gaps between freezing events there. These large and irregular gaps would scramble the k(T ) values.

Conversely, using a constant value across the range of temperatures covered by the data assures that all points are on the

same scale. If the observed freezing temperatures are close to each other varying the interval width would be compensated by

the inclusion of more or fewer events, so the results would be acceptable, but there is no practical reason for doing that. So, it5

is recommended to select a suitable value for ∆T and use it for the whole data set.

In the majority of experiments, Ti is irregularly distributed over the range of all freezing events for a given sample. Thus,

if ∆T is chosen too small there will be intervals with zeros and ones only. That would result in an almost meaningless

representation of the results as k(T ) would also consist of zeros and a uniform small value. The density of points along the

T axis would show some pattern but only in a qualitative way. The value chosen for ∆T is a compromise between what’s10

ideal and what’s practical. The latter perspective of course involves judgements over several factors. Most importantly, these

factors are the sample size and associated statistical validity, the precision with which Ti-values are determined, and the detail

in the final spectrum that is believed to hold meaningful information. In view of these conflicting influences, there is no single

recipe for setting ∆T , but the variations that result in the specific choice do not diminish the objective value of the derived k(T)

spectrum if normalized to unit temperature interval.15

For the sake of simplicity and generality, equal drop volumes are assumed in the calculations here, X is set to unity, and the

differential concentrations are presented with units of ◦C−1. Depending on the choice for X , (drop volume, particle surface

area per drop, mass of particles per drop) the units of k(T ) will be different, such as, for example ◦C−1cm−3, or ◦C−1µm−2,

or ◦C−1g−1.
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Figure 2. Plots of k(T ) for 0.2◦C and 0.5◦C binnings of the data from Table 1. The right-hand scale is shifted down slightly to allow the two

plots to be clearly seen. Zero values are indicated for the 0.5◦C graph with values below the range covered by the ordinate.

To illustrate the impacts of the choice of ∆T , Fig.2 shows the spectra for the Snomax sample with two different values.

The data shown in Table 1 was binned using ∆T = 0.2◦C and ∆T = 0.5◦C. For ∆T = 0.2◦C there are 51 empty bins (zeroes)

between −6 and −34◦C. For ∆T = 0.5◦C there are only 8 zeroes in the same temperature range. Eq. (2) was then used to

obtain k(T ). Plots of k(T ) shown in Fig. 2 differ, principally, in the degree of noisiness of the data points. Because of the

large range of values covered, plots of k(T ) almost always use logarithmic ordinate scale. This eliminates the possibility to5

include zero values, and special steps need to be taken for the plots to show these values. For one of the plots in Fig.2 the zeroes

were replaced by a low value well below the range covered by actual data in order to indicate the presence of the zero values.

Without this, the presence of zeroes, or empty bins, is seen as gaps between points, and as horizontal lines. This matters in

judging the significance of the points surrounding the zeroes. Clearly, the dip in k(T ) between -26◦C and -17◦C is percieved

to be much deeper when the zeroes are indicated.10

5 Calculation of k(T ) and K(T ).

Once the interval width has been decided, calculation of the differential concentration is a straightforward matter, resulting in

a value of k(T ) for each temperature interval. The cumulative concentration is then also calculated for the same temperatures

if it is done by summation of the differential values. This is not a requirement; the cumulative spectrum can be also calculated

without binning of the data and for as many temperatures as wanted.15

Based on the comparison presented in Fig. 2 and in the text associated with it, calculations for the Snomax sample are

processed here with ∆T = 0.5◦C. The result of that binning of Ti-values is shown in Fig. 3 as a histogram. After binning,

values of N(T ) were calculated by stepwise addition of the ∆N values from the lowest to the highest temperature, ending up

with No for the first interval with non-zero ∆N . Doing the accumulation of ∆N from lowest to highest temperature produces
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Table 2. Differential and cumulative spectra for the Snomax sample with 0.5◦C intervals, as discussed in Section 5.

[1] [2] [3] [4] [5] [6] [7]

temperature number of events number unfrozen number frozen fraction frozen differential cumulative

interval center in interval at beginning of interval at end of interval at end of interval per ◦C at end of interval

T ∆N N Nf f(T ) k(T ) K(T )

-3.75 0 507 0 0.000 0.000 0.000

-4.25 1 507 1 0.002 0.004 0.002

-4.75 0 506 1 0.002 0.000 0.002

-5.25 0 506 1 0.002 0.000 0.002

-5.75 0 506 1 0.002 0.000 0.002

-6.25 1 506 2 0.004 0.004 0.004

-6.75 8 505 10 0.020 0.032 0.020

-7.25 29 497 39 0.077 0.120 0.080

-7.75 58 468 97 0.191 0.265 0.212

-8.25 35 410 132 0.260 0.178 0.302

-8.75 24 375 156 0.308 0.132 0.368

-9.25 10 351 166 0.327 0.058 0.397

-9.75 6 341 172 0.339 0.036 0.414

-10.25 6 335 178 0.351 0.036 0.432

-10.75 4 329 182 0.359 0.024 0.445

-11.25 3 325 185 0.365 0.019 0.454

-11.75 3 322 188 0.371 0.019 0.463

-12.25 2 319 190 0.375 0.013 0.470

..... ..... ..... ..... ..... .....

..... ..... ..... ..... ..... .....

-28.75 7 265 249 0.491 0.054 0.676

-29.25 6 258 255 0.503 0.047 0.699

-29.75 3 252 258 0.509 0.024 0.711

-30.25 6 249 264 0.521 0.049 0.735

-30.75 5 243 269 0.531 0.042 0.756

-31.25 9 238 278 0.548 0.077 0.795

-31.75 9 229 287 0.566 0.080 0.835

-32.25 9 220 296 0.584 0.084 0.877

-32.75 11 211 307 0.606 0.107 0.930

-33.25 27 200 334 0.659 0.290 1.075

-33.75 89 173 423 0.834 1.445 1.798

-34.25 84 84 507 1.000 0.000 1.798

-34.75 0 0 507 1.000 0.000 1.798

-35.25 0 0 507 1.000 0.000 1.798

-35.75 0 0 507 1.000 0.000 1.798

N values at the upper end (warmer temperature) of each interval. To have the fraction frozen expressed with respect to the

lower end (colder temperature) of the interval it is obtained as:

f(T ) = 1− N(T )−∆N
No

. (6)
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Figure 3. Histogram of freezing temperatures and a plot of the fraction of drops frozen for the data from Table 1 (Snowmax suspension).

The differential concentration was calculated from Eq. 1 and the cumulative from Eq. 3. Results are given in Table 2. The

table is given from highest to lowest temperature to make it match the way the data are obtained in the experiment with gradual

cooling. The temperature in the first column is the mid-point of the interval over which the data were evaluated. As indicated

in the preceding paragraph, columns [4], [5], and [7] are shifted by one line with respect to the others in order that they refer to

the low end of the temperature interval. These distinctions of interval mid-point, high and low end are somewhat unnecessary5

considering the magnitude of the interval width but are included here to avoid misinterpretation of the tabulated data. It is

also worth noting that at the initial part of the table, the cumulative concentration is smaller in magnitude than the differential

because the differential is normalized to ◦C intervals, making the values, in this example, double of the value without that

normalization.

Plots of the differential and cumulative spectra are given in Fig. 4. In this graph, zero values are skipped over for giving10

the graph a less cluttered appearance. By using the same ordinate for both plots, the cumulative curve starts lower than the

differential, as explained above. Normalization to per unit volume of the drops or to site density ns is a matter of applying the

relevant multiplier to the ordinate values.

The effectiveness of transmitting the results of analyses such as this, as mentioned, depends on the numerous factors already

discussed. From a purely data-processing perspective, the spectrum with lower resolution is better because it has fewer zero15

values. No claim is made that the ∆T = 0.5◦C choice is optimal. The resulting k(T ) spectrum still has considerable fluctuations

in the middle portion of the temperature range. On the other hand, the main peak is well resolved, as is its asymmetric shape.

There are many additional steps that can be considered for smoothing the data, either at the ∆N level or in k(T ).

From the point of view of showing what kind of INPs were contained in the sample, all the graphs clearly indicate peaks

in activity near −8◦C and near −33◦C. The first peak is of course of the greater interest, as the low-temperature activity is20
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Figure 4. Differential and cumulative spectra for data discussed in Section 5 and displayed in different form in shown in Figs. 2 and 3. Zeros

are indicated in this plots by larger gaps between points.

considered background due to the supporting surface of the drops and impurities in the water used to suspend the active INPs.

The −8◦C peak has a broader tail toward colder temperatures. This features is clearly seen in both of the graphs. Finer details

of the peak can be seen if the data are processed at higher resolution but very little significance can be attached to those details

in light of the sample size, the temperature precision of the measurements and other instrumental factors. The k(T ) plots are

shown here with individual points for each temperature interval. In some cases it might be desirable to fit algebraic equations5

to the data.

6 Background correction

The differential concentration in a sample with various sources of INPs can be assumed to be the sum of the concentrations

due to each of the sources. This assumption of additive behavior is likely to hold for many cases and would be incorrect only

if, for some reason, interactions are expected between INPs from the different sources. The most relevant example of additive10

behavior, applicable to essentially all experiments with laboratory preparations, is the addition of the background activity to

that of the material to be tested. The water used to prepare suspensions of INPs is never totally free of INPs, and there is

potential for further contributions to the ’background’ by the components of the apparatus used in the experiment. While

extreme care is taken in most cases to minimize the background, it is always present to greater or lesser extent. Determination

of the background is accomplished with control experiments.15

The usefulness of a quantitative assessment of the background activity is demonstrated with the following example4. A

suspension of soil particles in distilled water, and control measurements of the distilled water, yielded the fraction frozen

curves in Fig. 5. From these graphs it would appear that the soil sample data are not reliable much below about −18◦C because
4This is the same example as was used in Vali (2018)
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Figure 5. Observed fractions of droplets frozen for the soil sample and for the control, as described in Section 6.

Figure 6. Differential spectra for the same data as shown in Fig. 5. Circle symbols are for the soil sample, diamond symbols are for the

control (blue). The spectra for the soil sample after correction for the distilled water background is shown with a line. The magnitude of the

correction is relatively minor in this case except in the temperature region between about −14◦C and −18◦C.
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of the appreciable level of activity in the control. When the differential spectra are computed and the control is subtracted

from the k(T )-values for the sample, the resulting plot shown in Fig. 6 reveals that only in a narrow region near −17◦C is the

contribution from the distilled water comparable to the INP activity in the soil. Thus, the INP activity in the soil sample below

−18◦C can be judged in a more objective fashion. Just considering this result, it would not be baseless to conclude that the soil

sample contained two types of INPs, those producing the peak centered on −13◦C and those giving rise to high numbers of INP5

below −18◦C. In practice, further tests with different amounts of soil in suspension would be useful to judge that conclusion.

7 Confidence intervals

Several sources of error contribute to determining the confidence limits or uncertainty ranges of results derived from drop

freezing experiments. Temperature accuracy is a minor contribution in most cases. Acuity of the detection of freezing is a larger

concern. These and other error sources need to be evaluated specifically for each experimental setup. A general and demanding10

problem is the evaluation of the statistical validity of results. That uncertainty, arising from sample sizes, is of special concern

because of the usually large temperature range of the observations, and the consequent small number of freezing events at

each temperature. Uncertainty ranges specific to each temperature can be evaluated using the k(T ) spectra, as described in the

following.

Even with identical drop volumes and with all drops produced from the same bulk suspension, considerable spreads in15

freezing temperatures are usually observed. As discussed earlier, variations in freeing temperatures are associated with specific

differences in INPs so that the variations in freezing temperatures indicate a non-random distribution of the INPs of different

activities in the drops. Hence, basic statistical methods are not applicable to estimating the confidence interval of the k(T )

or K(T ) spectra derived to characterize the INP content. In the absence of many repetitions of the experiments to determine

variability, Monte Carlo simulations provide a possible solution. In V71, such simulations were applied to show how the spread20

in k(T ) spectra is reduced by increasing sample size. Monte Carlo methods of slightly different configurations were also used

in Wright and Petters (2013) and in Harrison et al. (2016).

The differential concentration provides a convenient basis for simulations because values of k(T ) for given temperatures are

independent of the values at other temperatures. Use of the cumulative concentration derived from the fraction frozen would

be less transparent. The simplest basis for simulations is the number of freezing events observed in each temperature interval,25

∆N(T ). Random variability expected about those values is the measure sought in the simulation. This can be viewed as if a

new set of drops were taken each time from the same bulk sample, or a new set of particles were dispersed into the volume

each time, and then a freezing run performed. Simulation allows as many of these runs to be done as needed to reach a good

estimate of the variability.

The simulation is relatively simple. The number of events in any given temperature interval can be expected to follow30

a Poisson distribution on repeated testing. This probability distribution fits the situation because the number of events per
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interval is discrete, independent of other intervals, and the observed numbers can serve as the assumed true values. Hence,

taking the observed values of ∆N(T ) as the expectation values λ(T ) and generating a large number, say p, Poisson-distributed

numbers for each temperature interval provides independent virtual realizations of the experiment. The mean value of the ∆Ni

... ∆Np numbers in each interval will equal λ for that interval, and the standard deviation will be λ0.5. However, the Poisson

distributions include zeros even for mean values greater than zero. The chance of this reduces as the mean increases; the number5

of zero values is e−λ.

For a first demonstration of the simulation, a data set with a modest number of 106 drops is used here. Measured numbers

of freeing events for ∆T = 0.5◦C intervals and the calculated values of k(T ) are given in Table 3. As can be seen, the number

of events per interval is small, and would contain many zeroes using a smaller ∆T . Values in the second column were taken as

λ and 100 new sets of ∆Ni-values generated using a Poisson distributed random number generator in IDL (Harris Geospatial10

Solutions, Inc.). From those 100 new sets of values, 100 new N(T )-values were derived and k(T ) calculated using Eq. 1.

The simulation results can be used in many different ways to represent the resulting uncertainties in the presentations of the

empirical results. The scatter in k(T ) values is an immediate way to show the results. Cumulative spectra K(T ) can also be

obtained, as can standard deviations, or other measures.

Simulated results in terms of k(T ) are shown in Fig. 7. At a few places above the temperature axis, the number of zero15

values that occurred in the simulation for that interval are indicated. In this approach, the total number No for any given run

is not constrained to
∑
λ; the actual number among the 100 simulated sets varied by 10%. This variation alters the simulated

k(T ) values at the low end of the temperature range to some degree but is insignificant at the high end. There seem to be little

reason to go to that extent or refinement, but the problem could be eliminated by adjusting λ for lower temperatures for each

choice of ∆Ni in successive steps. One point of assurance on this score is that the 50-percentile of the simulated k(T ) points20

is only 3% off from those shown in Table 3.

The spread of 10 to 90% of values at each interval are shown in Fig. 8. This example shows roughly a factor of four spread in

k(T ) over the whole range of temperatures; worse for those points with low k(T ) and hence also having zero values potentially

expected in repetitions. As can be seen for this example, it clearly isn’t justified to attach too much significance to fine details

of the spectrum, but there is reasonably good definition of the broad peak of activity centered on −8◦C and of the rapid rise in25

numbers below −12◦C. Should the observed data have been binned in larger temperature intervals, the confidence limits would

have become narrower at the cost of lower temperature resolution. In the case here presented, this would be a reasonable choice

even though the intuitive approach is to present the data with temperature resolution justified by measurement precision. The

main limitation is from sample size.

As an illustration of the influence of sample size on the confidence intervals for k(T ), the Snomax sample for which data30

were presented in Section 4 was also used in a Monte Carlo simulation. The input to the simulation was extracted from Table 1

for the region near the peak, where there are 30-50 events per bin. The simulation results for 100 iterations are shown in Fig. 9
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Figure 7. Calculated k(T ) values for 100 iterations of random assignments of ∆N from a Poisson distribution with the λ values shown in

Table 3 for each interval. Numbers above the abscissa indicate the number of zero values in the simulation for selected temperatures.

Figure 8. The 10 to 90 percentile range of k(T ) for the results shown in Fig. 7. The green diamonds show the values of k(T ) from the

right-hand column of Table 3 for the observed sequence of freezing events. Points just above the abscissa are actually zero values.
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Table 3. Observed freezing data used as input to the Monte Carlo simulation described in Section 7.

temperature number of events k(T)

T ∆N = λ per ◦C

-6.25 3 0.057

-6.75 4 0.079

-7.25 6 0.125

-7.75 5 0.111

-8.25 9 0.216

-8.75 5 0.131

-9.25 4 0.111

-9.75 6 0.179

-10.25 3 0.096

-10.75 2 0.067

-11.25 2 0.069

-11.75 1 0.035

-12.25 2 0.073

-12.75 6 0.236

-13.25 1 0.042

-13.75 9 0.425

-14.25 12 0.759

-14.75 9 0.850

-15.25 13 2.894

and, as can be seen, the range of variation is less than a factor 2 at the peak. At the lower k(T ) values, the variability is similar

to what is seen in Fig. 9. Here too, zero values are plotted along an ordinate value of 10−2.

8 Summary

The differential spectrum, k(T ), is a useful representation of INP activity in heterogeneous freezing. This article examined

some of the factors that need to be considered in derivations of k(T ) for experiments executed with gradual cooling of an array5

of sample drops taken from the same bulk sample, and with the freezing of drops at different temperatures recorded. Freezing

at a given temperature is taken to indicate the presence of INPs active at that temperature. In Section 4, the importance of

the choice of temperature interval for computing the spectra was elaborated. Methods of calculation and the relation to other

derived quantities were presented in Section 5. Two applications were discussed: Section 6 presents a method for correcting

empirical results for background effects. Correction for background is achieved by subtraction of the k(T )-values. In Section10

7, a method was described for determination of confidence limits for k(T ) using Monte Carlo simulations. These applications

can significantly augment the value of information derived from laboratory freezing experiments and can improve model

predictions of ice formation in clouds.
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Figure 9. The 10 to 90 percentile range of k(T ) in 100 simulation for a segment of the spectrum shown in Fig. 4. Points just above the

abscissa stand for zero values. In contrast with other figures, a linear ordinate scale is used because of the small range of values covered. A

value of X = 1 is used; actual drop volume of particle concentration is not accounted for.

Table 4. Nomenclature.

f(T ) Fraction of sample drops frozen at T

k(T ) Differential nucleus concentration; x−1 ◦C−1

K(T ) Cumulative concentration of INPs active at temperatures above T ; x−1

ns Average particle surface area per drop; m−2

N(T ) Number of drops not frozen at temperature T

∆N Number of freezing events per temperature interval

No Total number of sample drops

T Temperature in ◦C

Ti Freezing temperature of a drop

X Reference quantity for normalization to unit volume of water, particle surface area, etc., as the case may be. For

generality, corresponding units are indicated in k(T ) and K(T ) as x

λ Mean value of of Poisson distribution, in the current context λ= ∆Nobserved
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9 Data availability

Raw data of observed freezing temperatures for the three samples included in this paper will be archived on a server of the

University of Wyoming and a DOI for accessing the data will be included in the final version of the paper.
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